激光干涉空间天线开路者号探测器开始测试 能探测到Ligo发现的黑洞合并现象(2)
放大来看,这就好比测量伦敦碎片大厦顶部与纽约世贸中心一号大厦顶部之间的距离,然后观察是否出现只有人类头发直径大小的变化。对于太空天文台来说,这是一个非常有挑战性的目标,但如果想要探测到极端微弱的“时空涟漪”,这样的表现是必需的。
“一开始的几天将会非常无聊;我们什么都做不了,”麦克纳马拉博士说,“我们只是让这两个测试重块在太空中自由飘浮,然后通过观察来不断学习,因为这种类型的实验此前从未有人做过。然后我们会开始探测我们的物理实验室。我们想知道什么因素会使这些测试重块脱离自由落体运动。”
天体追踪器通常用来导航,但也可以用于寻找小行星
LPF会喷出气体,从而绕着测试重块飞行
LPF无法自己探测引力波。为了完成这一任务,测试重块之间38厘米的间隔需要整个探测器被发射到距离地球100万公里甚至更远的位置上——这也是Lisa任务要达到的目标。但是,有了LPF,就可以对度量衡原则进行确认,最重要的是,科学家可以开始对那些必将干扰实验的“噪音”类型进行定性。
对LPF来说,有些噪音来源于内部设备自身的电流;此外还有一些可能会推动重块偏离自由落体的物理因素,包括探测器内细微的温度变化,以及探测器本身质量所产生的的近乎无法感知的引力牵拉。
为了维持最理想的自由落体环境,LPF必须从头到尾一直绕着测试重块飞行,保护它们免受阳光压力或细小的微陨石的影响。要做到这些,LPF要喷出微量的气体,以产生细微的推力。“LPF上面的冷气体推进器通常产生的推力,如果在地球上,只能够阻止一片雪花落下,”空中客车防务与航空公司(Airbus Defence and Space)的拉尔夫·科尔代(Ralph Cordey)博士解释道。LPF探测器正是在该公司位于英国的基地组装的。
LPF实际上具有两组独立的微型推进器,各自有独立的控制系统。其中一组由欧洲的工业界提供;另一组是美国航空航天局(NASA)的项目成果。在最初的三个月里,欧洲的推进器将完成所有工作;从夏季往后,美国的控制系统和推进器将接管工作,并支持激光干涉仪的测量。
一旦所有的测试完成,LPF将可能运行一些额外的、与引力波无关的实验。目前正在考虑的想法包括探测近地小行星。这项工作可以用探测器上空闲的天体追踪器进行。该仪器的导航传感器将被编程,以向地球报告其视野中意料之外的小行星运动。
另一项可能的实验是利用LPF探测器上的超灵敏仪器对“Big G”进行定量,即万有引力常数。这是牛顿力学中最基础的数值,在研究两个距离已知的质体之间有多大的引力时至关重要。在地球的实验室里,通过扭秤可以很 地得到万有引力常数,但利用LPF进行测量,将为物理学家提供完全不一样的 数值。